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Abstract

The design of DNA sequences is one of the most practical and important research topics in DNA computing. We adopt taboo search
algorithm and improve the method for the systematic design of equal-length DNA sequences, which can satisfy certain combinatorial
and thermodynamic constraints. Using taboo search algorithm, our method can avoid trapping into local optimization and can find

a set of good DNA sequences satisfying required constraints.
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1. Introduction

Since Adleman [1] presented the experiment of using
molecular biology to solve a 7-vertex instance of Hamilto-
nian path problem in 1994, DNA computing shows a great
potential to solve the NP-complete problems. DNA
sequences design is one of the most practical and important
research topics in DNA computing. In order to obtain suc-
cessful results of biological experiments, effective DNA
sequences must be designed for target computational prob-
lem. There has been a great deal of previous work in
designing DNA sequences [2-5]. In particular, Frutos
et al. [6,7] proposed the template-map method for DNA
word design. Feldkamp [8] demonstrated a DNA sequence
compiler algorithm for designing DNA sequences. Deaton
et al. [9-11] presented a genetic algorithm for generating
DNA strands. However, the obvious disadvantage of the
current DNA generator algorithm is the possibility of
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being trapped into local optimization which may be far
from the global optimal solution.

Taboo search is a general technique proposed by Glover
[12,13] for obtaining approximate solutions to combinato-
rial optimization problems. Taboo search avoids being
trapped into local minimum by allowing the temporal
acceptance of worse solution. And it has been successfully
applied to a wide range of combinatorial optimization
problems such as job shop scheduling problem [14], graph
coloring problem [15], and maximum independent set
problem [16-18]. It provides encouraging optimization
performance.

In this paper, we adopt taboo search algorithm to solve
the DNA-encoding problem, and improve the algorithm to
integrate the required combinatorial and thermodynamic
constraints for DNA computing.

2. Problem description
Let W=5-wyw,--w,-3 be a DNA word, where w;

belongs to the alphabet set {4, C, G, T}. The goal of the
problem is to design a set of DNA words with equal-length
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n, satisfying certain combinatorial constraints and thermo-
dynamic constraints. Six kinds of common constraints are
considered in this study.

2.1. Hamming distance constraint

The Hamming distance between two binary strings is the
number of corresponding places where two characters dif-
fer. In DNA coding, Hamming distance is used to describe
the non-similar degree between two DNA sequences, with
the greater the Hamming distance, the less similar the
degree of two base pairs and the less likely for mismatch
hybridization.

For every pair of distinct words W1, W2 in the set,
H(W1,W2) = d. Here, H(W1,W2) represents the Ham-
ming distance between words W1 and W2, namely, the
number of positions i at which the ith letter in W1 differs
from the ith letter in W2. H(W1, W2) is given by

HW,W,) = Zh(W1i>W2i)
Py

0, lf W1 = Wy,

h(wii, wyi) = {

1, else

2.2. Similarity constraint

The similarity constraint is used to describe a similar
degree between two DNA sequences. The similarity con-
straint computes the similarity in the same direction to
keep each sequence as unique as possible including the
position shift. Similarity between two binary strings is the
number of the corresponding places where two characters
are the same.

Similarity between two DNA words W1, W2 is given by

S(W1, W2) = min H(W,0"(2)) 2)

where ¢ is the (right-) left-shift and H(*,*) is the ordinary
Hamming distance.

2.3. GC content constraint

The GC content is the percentage of bases in any word
W € S which is either G or C. The GC content affects the
thermodynamic properties of a DNA molecule. Therefore,
if all these words will ensure similar GC content, all DNA
sequences must have similar thermodynamic characteristics
which can effectively reduce the probability of the occur-
rence of non-specific hybridization.

2.4. H-measure constraint

The H-measure constraint considers two sequences as
complementary ones. H-measure computes how many
nucleotides are complementary between the given sequences
to prevent cross-hybridization of two sequences. H-measure

takes the minimum of all the Hamming distances obtained
by successively shifting and lining up the Watson—Crick
complement of W2 against W1.

H-measure between two DNA words W1, W2 is given
by
Hmeasure(Wla WZ) = Il’likl'l H(Wh Gk(m)) (3)

—n<k<n

where o is the (right-) left-shift and H(*,*) is the ordinary
Hamming distance.

2.5. Forbidden subsequence constraint

For any word W € S, the word must not contain any
given undesired subsequences through the whole strand.
In some biological experiments, some subsequences are
reserved for special purposes. For example, special DNA
subsequences such as the restriction enzyme site should
be controlled. In addition, most biological experiments
must avoid the hairpin structure and the dimer structure,
and such subsequences as ‘AAA’, ‘TTT’, ‘CCC’, ‘GGG’
‘CATG’, ‘TCGA’, ‘AGCT’, and ‘GTAC’ are forbidden.

2.6. Hairpin constraint

Hairpin is an undesirable DNA secondary structure,
because it can hybridize itself. In order to make the hybrid-
ization between a DNA word and its Watson—Crick com-
plement more efficient, the single DNA word should be
hairpin structure-free. Hairpin structure consists of the ring
part and the stem part. The length of the typical minimum
hairpin stem is 3.

3. Taboo search algorithm for DNA encoding

The taboo search has been successfully applied to a large
number of combinatorial optimization problems. The algo-
rithm is a well-known hill-climbing heuristic, which uses a
memory function to avoid being trapped at a local
minimum.

The algorithm procedures are generally simple. The pro-
cedure starts with a feasible initial DNA word with required
length and stores the candidate solution as the current seed.
Then the neighbor DNA words of the current seed are pro-
duced by the neighborhood structure. These neighbor DNA
words are candidate solutions. These DNA words are eval-
uated by certain combinatorial constraints and thermody-
namic constraints, and a candidate which satisfies the
aspiration criterion is selected as a new seed solution. This
selection is called a move and added to the taboo list. Itera-
tions are repeated until a stop criterion has been satisfied.
Fig. 1 shows the procedure of taboo search algorithm.

3.1. Initial solution

The initial solution is a nucleotide word string generated
by a random method. Then we use the GC content constraint
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Generate an initial DNA word,
store it as the current seed solution,
and clear the taboo list

Is stop criterion satisfied?

Generate neighbors of the current seed
solution by a neighborhood structure

Output DNA words set

Store the neighbor
solution as the new seed

—{ Add the neighbor solution to the taboo list |<7

Fig. 1. The flow diagram of the taboo search algorithm.

and the forbidden subsequence constraint to test the initial-
ization. If the initial solution fits all constraints, it will be
added to the taboo list and stored as the current seed
solution.

3.2. The neighborhood structure

A neighborhood structure is a mechanism which can
obtain a set of new neighbor solutions by applying a diver-
sification strategy to a given solution. Each neighbor solu-
tion is reached immediately from a seed solution by a
move. The neighborhood structure is directly effective on
the efficiency of TS algorithm.

In this study, the neighborhood solutions are generated
by exchanging the sequence nucleotide bases. The whole
neighborhood representation is about a permutation of all
DNA words which fits Hamming distance constraint. This
significantly facilitates the data structure, since every solu-
tion may be stored by means of a permutation of the nucle-
otide alphabet {4, C, G, T} with the length of n.

For a given solution word W =5-wiws --w;...w,-3
replaces w; by another nucleotide base k; w;#k;,
ki€ {A,C,G,T}. The new word is W= 5-wiw,- - -ki---w,-
3’ and the Hamming distance H(W, W) is 1. If the required
Hamming distance is /4, replace (w;,wp,...,w;) with
(kit, ki, ..., ki) at different positions; the Hamming dis-
tance between two words H(W, W) is h. If the required
DNA word length is n and the required Hamming distance
is h, we change 4 different nuclide bases of seed word W
randomly, and such neighborhood structure can construct
almost C" neighbor candidate solutions.

3.3. Evaluating neighbor solution

Each generated DNA words must be evaluated by com-
binatorial constraints and thermodynamic constraints. If
the word violates any constraint, the word will be added
to taboo list.

For each solution We S, let fumeasurel W), fac(W),
Js(W), fes(W), fup(W) be the H-measure constraint func-

tion, the GC content constraint function, the similarity
constraint function, the forbidden subsequence constraint
function, and the hairpin constraint function, respectively.
When moving from a solution W to another solution
W' € N(W), the new solution is evaluated by the following
functions:

(1) fH-measure(W) = Z?zlz;’:]Hmeasure(Wi» Wj) Computes
all the H-measure (Wi, Wj) values. If the function
JSH-measure( W) does not satisfy the target value, new
DNA sequence W should be neglected and added to
the taboo list.

(i) focA W) = (GClarger — GC(W)))* calculates the GC
content of the word W. If foA( W) does not satisfy
the required GC content, the tested sequence should
be added to the taboo list.

(iii) fs(W) = >", > S(Wy, W;) computes all S(Wi, Wj)
values. If the function fs(W) does not satisfy target
value, new DNA sequence W should be neglected
and added to the taboo list.

(iv) fes(W) = 321,311 S(W, Subsequence) searches for
all forbidden subsequences. If the function frs(W)
does not satisfy target value, the candidate sequence
should be added to the taboo list.

(V) fup(W) tests the Hairpin constraint. If fp( W) does
not satisfy the minimum stem length, the tested
sequence should be added to the taboo list. Fig. 2
shows the hairpin secondary structure parameters.

s+k—1
fHP(W) = HPtarget - Z bp(wivwk+23+r—1—i)a

i=0
Lx=y
bp(x,y) = {0 XA

3<r<n—25,0<k<n—2s—r

Because all constraints are parallel, the five terms listed
above are logical multiplication. Solutions are evaluated
using a function

FW) = fs(W)fu(W) focW) frs(W) fur (W) (4)

3.4. Taboo list and termination criterion

Because evaluating a neighbor solution will take
much time, if a neighbor solution violates any combina-

End position
its+tr+s—1 its+r

N A

3= e ATC «+ve+ GATAG G
5 e TAG ++++-- CTATC G

G C
s bases stem €6
r bases loop

Start position i its —1

Fig. 2. Hairpin secondary structure parameters.
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Table 1

Comparison results of the sequences by our algorithm and the sequences in Refs. [10,19]

Sequence (5'-3') Continuity Hairpin H-measure Similarity GC%
Our algorithm

CCACCACCACCACCAATAAT 0 0 37 55 50
ACCTCACTCACTCACTCAAC 0 0 44 64 50
TAACAGAACAGAACAGGCCG 0 0 53 48 50
CACACACACACACACACACA 0 0 33 54 50
AATCTCTCTCTCTCTCTGCC 0 0 46 55 50
CGCCAGCCAGCCTATATATA 0 0 59 54 50
TTGCATTCCTTCCTTCCTGG 0 0 54 46 50
Deaton et al. [10]

ATAGAGTGGATAGTTCTGGG 9 3 55 64 45
CATTGGCGGCGCGTAGGCTT 0 0 69 51 65
CTTGTGACCGCTTCTGGGGA 16 0 60 63 60
GAAAAAGGACCAAAAGAGAG 41 0 58 45 40
GATGGTGCTTAGAGAAGTGG 0 0 58 54 50
TGTATCTCGTTTTAACATCC 16 4 61 50 35
TTGTAAGCCTACTGCGTGAC 0 3 75 55 50
Shin et al. [19]

CTCTTCATCCACCTCTTCTC 0 0 43 58 50
CTCTCATCTCTCCGTTCTTC 0 0 37 58 50
TATCCTGTGGTGTCCTTCCT 0 0 45 57 50
ATTCTGTTCCGTTGCGTGTC 0 0 52 56 50
TCTCTTACGTTGGTTGGCTG 0 0 51 53 50
GTATTCCAAGCGTCCGTGTT 0 0 55 49 50
AAACCTCCACCAACACACCA 9 0 55 43 50

torial or thermodynamic constraint, it will be added to
the taboo list to avoid repeat testing. The algorithm
ends when the number of iterations reaches a maximum
value, or the solution DNA word set has got enough
DNA words.

4. Simulation results

In the above section, the taboo search algorithm was
improved to design good DNA sequences. The algo-
rithm has been implemented on Pascal language com-
piler of Borland Delphi 7. In the simulation, DNA
sequences of length 20-mer are considered. The neigh-
borhood structure Hamming distance is 9. The subse-
quences ‘AAA’, ‘CCC’, ‘GGG’, and ‘TTT’ could
guarantee that each DNA sequence must satisfy the
continuity constraint. We assumed that the hairpin for-
mation requires at least a six-base loop and six-base
pairings.

We choose the best DNA sequences set generated by
our algorithm and compared the results with those of
Deaton et al. [10] and Shin et al. [19] The comparison
results are shown in Table 1. Our sequences show much
lower similarity values and H-measure. This implies that
the sequences made by our algorithm have much higher
probability to hybridize with its complementary
sequences. Moreover, the secondary structure is strictly
prohibited due to the very low continuity and hairpin.
GC content ensures that these DNA sequences have simi-
lar thermodynamic characteristics.

5. Conclusion

A new algorithm of DNA sequence design for DNA
computing has been proposed. Because the neighbor struc-
ture in this algorithm can overlap the whole solution space,
our algorithm can generate one of the greatest DNA
sequence sets satisfying the required constraints. Because
all constraints in our algorithm are parallel, additional con-
straints are supported by the algorithm and can be inte-
grated into our model in a straightforward way.
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